| A comparative investigation of the combined effects of pre processing, wavelength selection and regression methods on near-infrared calibration model performance |
2017 |
Wan Jian, Chen Yi-Chieh, Morris A Julian, Thennadil N Suresh |
Appl. Spectrosc. |
On-Line 30/03/17 |
|
C1 Multivariate data analysis, D3 Performance monitoring |
DOI
|
| A comparative investigation of the combined effects of pre-processing, wavelength selection and regression methods on near infrared calibration model performance, |
2017 |
Wan J., Chen, Y.-C., Morris, J. A. and Thennadil, S. N |
Applied Spectroscopy |
Jul:71 (7) |
1432-1446 |
C1 Multivariate data analysis, D3 Performance monitoring |
DOI
|
| A heuristic approach to handling missing data in biologics manufacturing databases |
2019 |
Mante, J., Gangadharan, N., Sewell, D. J., Turner, R., Field, R., Oliver, S. G., . . . Dikicioglu, D. |
Bioprocesses and Biosystems Engineering |
42 (4) |
657-663 |
B3 Biological process analysis, D3 Performance monitoring |
DOI
|
| A MATLAB toolbox for data pre-processing and multivariate statistical process control |
2019 |
Yi G, Herdsman C, Morris J |
Chemometrics and Intelligent Laboratory Systems |
194 |
103863 |
C1 Multivariate data analysis, D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| A Mechanistic and Cautionary Case Study on the Use of Alternating Potential in Electrochemical Reactions |
2020 |
Wills Alfie G., Poole Darren L., Alder Catherine M., Reid Marc |
ChemElectroChem |
7 |
2771-2776 |
B1 Reaction monitoring, D1 Kinetic modelling |
DOI
|
| A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification |
2023 |
Mowbray Max R., Wu Chufan, Rogers Alexander W., Rio-Chanona Ehecatl A. Del, Zhang Dongda |
Biotechnology and Bioengineering |
120 |
154-168 |
D1 Kinetic modelling |
DOI
|
| A Transferable Psychological Evaluation of Virtual Reality Applied to Safety Training in Chemical Manufacturing |
2021 |
Poyade Matthieu, Eaglesham Claire, Trench Jordan, Reid Marc |
ACS Chemical Health & Safety |
28 |
55-65 |
D3 Performance monitoring |
DOI
|
| An integrated dimensionality reduction and surrogate optimization approach for plant-wide chemical process operation |
2021 |
Savage Thomas R., Almeida-Trasvina Fernando, del-Rio Chanona Ehecatl A., Smith Robin, Zhang Dondga |
AIChE Journal |
|
|
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Artifical intelligence techniques applied as estimator in chemical process systems - A literature survey |
2015 |
Ali J M, Hussain M A, Tade M O and Zhang J. |
Expert Systems with Applications |
Vol 42 No 14 |
5915-5913 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Batch to batch iterative learning control using updated models based on a moving window of historical data |
2012 |
Jewaratnam J, Zhang J, Hussain A and Morris J |
Procedia Engineering |
Vol 42 |
232-240 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Batch-to-batch control of fed-batch processes using control-affine feedforward neural network |
2008 |
Xiong Z, Xu Y, Zhang J and Dong J |
Neural Computing & Applications |
17 |
425-432 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Biomass composition: the “elephant in the room” of metabolic modelling |
2015 |
Dikicioglu Duygu, Kirdar Betul, Oliver Stephen G. |
Metabolomics |
11 |
1690-1701 |
B3 Biological process analysis, D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology |
2017 |
Cankorur-Cetinkaya Ayca, Dias Joao M. L., Kludas Jana, Slater Nigel K. H., Rousu Juho, Oliver Stephen G., Dikicioglu Duygu |
Microbiology |
163 |
829-839 |
B3 Biological process analysis, D3 Performance monitoring |
DOI
|
| Comparison of Individual and Integrated Inline Raman, Near-Infrared, and Mid-Infrared Spectroscopic Models to Predict the Viscosity of Micellar Liquids |
2020 |
Haroon Kiran, Arafeh Ali, Cunliffe Stephanie, Martin Philip, Rodgers Thomas, Mendoza Cesar, Baker Michael |
Applied Spectroscopy |
74 |
819-831 |
A5. ATR-MIR spectrometry, A3. Transmission NIR spectrometry/Raman spectrometry, D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design |
2019 |
Rio-Chanona Ehecatl Antonio, Wagner Jonathan L., Ali Haider, Fiorelli Fabio, Zhang Dongda, Hellgardt Klaus |
AIChE Journal |
65 |
915-923 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Digital process design to define and deliver pharmaceutical particle attributes |
2023 |
Urwin Stephanie J., Chong Magdalene W.S., Li Wei, McGinty John, Mehta Bhavik, Ottoboni Sara, Pathan Momina, Prasad Elke, Robertson Murray, McGowan Mark, al-Attili Mais, Gramadnikova Ekaterina, Siddique Mariam, Houson Ian, Feilden Helen, Benyahia Brahim, Brown Cameron J., Halbert Gavin W., Johnston Blair, Nordon Alison, Price Chris J., Reilly Chris D., Sefcik Jan, Florence Alastair J. |
Chemical Engineering Research and Design |
196 |
726-749 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Disturbance Attenuation in Fault Detection of Gas Turbine Engines: A Discrete Robust Observer Design |
2009 |
Dai X, Gao Z, Breikin T and Wang H |
IEEE T. Syst. Man Cybernet. Part C |
39(2) |
234-239 |
D3 Performance monitoring |
DOI
|
| Dynamic modelling of the killing mechanism of action by virus-infected yeasts |
2019 |
Sheppard Sean, Dikicioglu Duygu |
Journal of The Royal Society Interface |
16 |
20190064 |
B3 Biological process analysis, D1 Kinetic modelling |
DOI
|
| Effect of particle size distribution on spatially and angularly resolved diffuse reflectance measurement |
2018 |
Chen Yi-Chieh, Tiernan-Vandermotten Sarra, Lue Leo, Ferreira Carla Sofia, Sefcik Jan, Thannadil Suresh |
European Pharamaceutical Review |
23 |
34-37 |
A2 Particle size effects in Raman and NIR, C1 Multivariate data analysis, D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Energy efficiency optimisation for distillation column using artificial neural network models |
2016 |
Osuolale F, Zhang J. |
Energy |
Vol 106 |
562-578 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Enhanced Predictive Modelling Using Multi Block Methods |
2009 |
Jeong JJ, Zhang J and Morris AJ |
19th Symposium on Computer Aided Process Engineering - ESCAPE 19 |
|
|
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Entropy Optimization Filtering for Fault Isolation of nonlinear Non-Gaussian Stochastic Systems |
2009 |
Guo L, Yin L, Wang H and Chai TY |
IEEE T. Automat. Cont. |
54: |
804-810 |
D3 Performance monitoring |
DOI
|
| Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron-recruiting enzyme abundance from cofactor requirements |
2019 |
Dikicioglu Duygu, Oliver Stephen G. |
Biotechnology and Bioengineering |
116 |
610-621 |
D2 Multi-block, predictive and multi-scale modelling methods, B3 Biological process analysis |
DOI
|
| Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach |
2012 |
Stubbs S, Zhang J, Morris J. |
Computers & Chemical Engineering |
Vol 41 |
77-87 |
D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| Fault detection of dynamic processes using a simplified monitoring-specific CVA state space approach |
2009 |
Stubbs S, Zhang J and Morris AJ |
Eur. Sym. Comput. Aided Process Eng. ESCAPE 19 |
|
|
D3 Performance monitoring |
DOI
|
| Fault localization in batch processes through progressive principal component analysis modeling |
2011 |
Hong JJ, Zhang J, Morris J |
Ind Eng Chem Res |
Vol 50 (13) |
8153-8162 |
D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| Flux Balance Analysis of a Genome-Scale Yeast Model Constrained by Exometabolomic Data Allows Metabolic System Identification of Genetically Different Strains |
2007 |
Cakir T., Efe C., Dikicioglu D., Hortacsu A., Kirdar B., Oliver S.G. |
Biotechnology Progress |
23 |
320-326 |
D2 Multi-block, predictive and multi-scale modelling methods, B3 Biological process analysis |
DOI
|
| Formal model of Parkinson’s disease neurons unveils possible causality links in the pathophysiology of the disease |
2020 |
Nadal Morgane, Schierle Gabriele S. Kaminski, Dikicioglu Duygu |
|
|
|
D1 Kinetic modelling, B3 Biological process analysis |
DOI
|
| Handling variability and incompleteness of biological data by flexible nets: a case study for Wilson disease |
2018 |
Júlvez Jorge, Dikicioglu Duygu, Oliver Stephen G. |
npj Systems Biology and Applications |
4 |
|
B3 Biological process analysis, D1 Kinetic modelling |
DOI
|
| Hybrid modeling as a QbD/PAT tool in Process Development: An industrial E.Coli case study |
2016 |
von Stosch M, Hamelink J M, Oliveira R. |
Journal of Bioprocess and Biosystems Engineering |
39 (5) |
773-784 |
D2 Multi-block, predictive and multi-scale modelling methods, D3 Performance monitoring |
DOI
|
| Improved method for kinetic studies in microreactors using flow manipulation and non-invasive Raman spectrometry |
2011 |
Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P, Dallin P and Girkin JM |
Journal of the American Chemical Society |
133 |
3601-3608 |
A1. Non-invasive Raman spectrometry, B1 Reaction monitoring, B4 Microreactors and flow chemistry, D1 Kinetic modelling |
DOI
|
| Inferential estimation of kerosene dry point in refineries with varying crudes |
2012 |
Zhou C, Liu Q, Huang D X, Zhang J. |
Journal of Process Control |
Vol 22 No 6 |
1122-1126 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Integration of Metabolic Modeling and Phenotypic Data in Evaluation and Improvement of Ethanol Production Using Respiration-Deficient Mutants of Saccharomyces cerevisiae |
2008 |
Dikicioglu Duygu, Pir Pinar, Onsan Z. Ilsen, Ulgen Kutlu O., Kirdar Betul, Oliver Stephen G. |
Applied and Environmental Microbiology |
74 |
5809-5816 |
D2 Multi-block, predictive and multi-scale modelling methods, B3 Biological process analysis |
DOI
|
| Investigating ‘greyness’ of hybrid model for bioprocess predictive modelling |
2023 |
Rogers Alexander W., Song Ziqi, Ramon Fernando Vega, Jing Keju, Zhang Dongda |
Biochemical Engineering Journal |
190 |
108761 |
D1 Kinetic modelling |
DOI
|
| Iterative learning control of a crystallisation process using batch wise updated linearised models identified using PLS |
2009 |
Zhang J, Nguyan J and Morris AJ |
Computer Aided Chemical Engineering 26, Proceedings of the 19th European Symposium on Computer Aided Process Engineering |
|
387-392 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty |
2021 |
Vega-Ramon Fernando, Zhu Xianfeng, Savage Thomas R., Petsagkourakis Panagiotis, Jing Keju, Zhang Dongda |
Biotechnology and Bioengineering |
118 |
4854-4866 |
B1 Reaction monitoring, D1 Kinetic modelling |
DOI
|
| Kinetic modeling and process analysis for Desmodesmus sp. lutein photo-production |
2017 |
del Rio-Chanona Ehecatl Antonio, Ahmed Nur rashid, Zhang Dongda, Lu Yinghua, Jing Keju |
AIChE Journal |
63 |
2546-2554 |
D1 Kinetic modelling |
DOI
|
| Machine learning and metabolic modelling assisted implementation of a novel process analytical technology in cell and gene therapy manufacturing |
2023 |
Williams Thomas, Kalinka Kevin, Sanches Rui, Blanchard-Emmerson Greg, Watts Samuel, Davies Lee, Knevelman Carol, McCloskey Laura, Jones Peter, Mitrophanous Kyriacos, Miskin James, Dikicioglu Duygu |
Scientific Reports |
13 |
|
B2 Monitoring of drying and powder blending, D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| MBA-GUI: A chemometric graphical user interface for multi-block data visualisation, regression, classification, variable selection and automated pre-processing |
2020 |
Mishra Puneet, Roger Jean Michel, Rutledge Douglas N., Biancolillo Alessandra, Marini Federico, Nordon Alison, Jouan-Rimbaud-Bouveresse Delphine |
Chemometrics and Intelligent Laboratory Systems |
205 |
104139 |
D2 Multi-block, predictive and multi-scale modelling methods, C1 Multivariate data analysis |
DOI
|
| MBA-GUI: A chemometric graphical user interface for multi-block data visualisation, regression, classification, variable selection and automated pre-processing |
2020 |
Mishra Puneet, Roger Jean Michel, Rutledge Douglas N., Biancolillo Alessandra, Marini Federico, Nordon Alison, Jouan-Rimbaud-Bouveresse Delphine |
Chemometrics and Intelligent Laboratory Systems |
205 |
104139 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Metabolic modeling to identify engineering targets forKomagataella phaffii: The effect of biomass composition on gene target identification |
2017 |
Cankorur-Cetinkaya Ayca, Dikicioglu Duygu, Oliver Stephen G. |
Biotechnology and Bioengineering |
114 |
2605-2615 |
D2 Multi-block, predictive and multi-scale modelling methods, B3 Biological process analysis |
DOI
|
| Modelling and control of reactive polymer composite moulding using bootstrap aggregated neural network models |
2011 |
Zhang J, Pantelelis N G. |
Chemical Product and Process Modeling |
Vol 6 (2) |
Article 5 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Modelling of a post combustion CO2 capture process using neural networks |
2015 |
Li F, Zhang J, Oko E and Wang M |
Fuel |
151 |
156-163 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Multi-scale Multiblock Batch Monitoring:Sensor and Process Drift and Degradation |
2015 |
Alawi A, Zhang J and Morris J, |
Org. Process Res. Dev. |
19 (1) |
145-157 |
B1 Reaction monitoring, D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Multivariate kinetic hard-modelling of spectroscopic data: A comparison of the esterification of butanol by acetic anhydride on different scales and with different instruments |
2008 |
Puxty, Neuhold Y-M, Ehly M, Gemperline PJ, Nordon A, Littlejohn D, Basford JK, De Cecco M and Hunderbuhler K |
Chem. Eng. Sci., |
63 (19) |
4800-4809 |
B1 Reaction monitoring, D1 Kinetic modelling |
DOI
|
| Multiway interval partial least squares for batch process performance |
2013 |
Stubbs S, Zhang J, Morris J. |
Ind Eng Chem Res |
Vol 52 (35) |
12399-12407 |
D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| Neural network approach for predicting drum pressure and level in coal-fired subcritical power plant |
2015 |
Oko E, Wang M and Zhang J. |
Fuel |
151 |
139-145 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Nonlinear multiscale modelling for fault detection and identification |
2008 |
Choi SW, Morris J and Lee I-B |
Chemical Engineering Science |
62 (22) |
6191-6198 |
D2 Multi-block, predictive and multi-scale modelling methods, D3 Performance monitoring |
DOI
|
| Nonlinear process modelling using echo state networks optimised by covariance matrix adaption evolutionary strategy |
2020 |
Liu K, Zhang J |
Computers & Chemical Engineering |
135 |
106730 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Nonlinear wave modeling and dynamic analysis of internal thermally coupled distillation columns |
2012 |
Liu X, Zhou Y, Cong L, Zhang J. |
AIChE Journal |
Vol 58 No 4 |
1146-1156 |
D1 Kinetic modelling, E2 Process control |
DOI
|
| On-line multivariate statistical monitoring of batch processes using Gaussian mixture model |
2010 |
Chen T, Zhang J. |
Computers & Chemical Engineering |
Vol 34 |
500-507 |
D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| Optimal control of fed-batch processess using particle swarm optimisation with staked neural network models |
2009 |
Herrara F, Zhang J |
Computers & Chemical Engineering |
Vol 33, No 10 |
1593-1601 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model |
2008 |
Xiong Z, Zhang J and Dong J |
Chinese Journal of Chemical Engineering |
16 |
235-240 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Overproduction of L-tryptophan via simultaneous feed of glucose and anthranilic acid from recombinantEscherichia coliW3110: Kinetic modeling and process scale-up |
2018 |
Jing Keju, Tang Yuanwei, Yao Chuanyi, del Rio-Chanona Ehecatl A., Ling Xueping, Zhang Dongda |
Biotechnology and Bioengineering |
115 |
371-381 |
D1 Kinetic modelling |
DOI
|
| Penalized reconstruction-based multivariate contribution analysis for fault isolation |
2013 |
He B, Zhang J, Chen T and Yang X |
Ind Eng Chem Res |
Vol 52 (23) |
7784-7794 |
D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| Photocatalytic Production of Bisabolene from Green Microalgae Mutant: Process Analysis and Kinetic Modeling |
2018 |
Harun Irina, Del Rio-Chanona Ehecatl Antonio, Wagner Jonathan L., Lauersen Kyle J., Zhang Dongda, Hellgardt Klaus |
Industrial & Engineering Chemistry Research |
57 |
10336-10344 |
D1 Kinetic modelling |
DOI
|
| Predicting molten steel endpoint temperature using a feature-weighted model optimized by mutual learning cuckoo search |
2019 |
Yang Q, Zhang J, Yi Z |
Applied Soft Computing Journal |
83 |
105675 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Prediction of absorption and stripping factors in natural gas processing industries using feed forward artificial neural network |
2016 |
Ahmad Z, Zhang J, Kashiwao T and Bahadori A. |
Petroleum Science and Technology |
Vol 34 No 2 |
105-113 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Progressive multi-block modelling for enhanced fault isolation in batch processes |
2014 |
Hong JJ, Zhang J, Morris J |
Journal of Process Control |
24(1) |
13-26 |
D2 Multi-block, predictive and multi-scale modelling methods, D3 Performance monitoring |
DOI
|
| Quality by digital design in action: a workflow for crystallisation and isolation |
2025 |
Houson Ian, Siddique Humera, Chong Magdalene W.S., Robertson Murray, Turner Alice J., Nordon Alison, Osman Amal, Galindo Amparo, Dunn Andrew S., Johnston Blair, Benyahia Brahim, Brown Cameron J., Mustoe Chantal L., Price Chris J., Reilly Chris D., Adjiman Claire, Jackson George, Prasad Elke, Halbert Gavin, Feilden Helen, Sefcik Jan, McGinty John, Robertson John, Smith Kenneth, Al-Attili Mais, McGowan Mark, Siddique Mariam, Pathan Momina, Rajoub Nazer, Hamilton Niki, Feeney Rachel, Brown Scott, Urwin Stephanie J., Bernet Thomas, Pickles Thomas, Li Wei, Florence Alastair J. |
International Journal of Pharmaceutics |
686 |
126343 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Randomized Kernel Principal Component Analysis for Modeling and Monitoring of Nonlinear Industrial Processes with Massive Data |
2019 |
Zhou Z, Du N, Xu J, Li Z, Wang P, Zhang J |
Industrial and Engineering Chemistry Research |
58 |
10410-10417 |
E1 Multivariate statistical process control, D3 Performance monitoring |
DOI
|
| Recent trends in multi-block data analysis in chemometrics for multi-source data integration |
2021 |
Mishra Puneet, Roger Jean-Michel, Jouan-Rimbaud-Bouveresse Delphine, Biancolillo Alessandra, Marini Federico, Nordon Alison, Rutledge Douglas N. |
TrAC Trends in Analytical Chemistry |
137 |
116206 |
D2 Multi-block, predictive and multi-scale modelling methods, C1 Multivariate data analysis |
DOI
|
| Reconstruction-based multivariate contribution analysis for fault isolation: A branch and bound approach |
2012 |
He B, Ynag X, Chen T, Zhang J |
Journal of Process Control |
Vol 22 |
1228-1236 |
D3 Performance monitoring, E1 Multivariate statistical process control |
DOI
|
| Reliable optimal control of a fed-batch fermentation process using ant colony optimisation and bootstrap aggregated neural network models |
2014 |
Zhang J, Feng M |
Appl. Metaheuristics Process. Eng. |
|
183-200 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Reliable optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks |
2013 |
Mohammed K R, Zhang J. |
Neural computing & Applications |
Vol 23 |
1891-1898 |
D2 Multi-block, predictive and multi-scale modelling methods, E2 Process control |
DOI
|
| Scale-up of batch kinetic models |
2007 |
Ehly M, Gemperline PJ, Nordon A, Littlejohn D, Basford JK and De Cecco M |
Anal Chim Acta |
595 |
80-88 |
B1 Reaction monitoring, D1 Kinetic modelling |
Download
DOI
|
| Selective Combination of Multiple Neural Networks for Improving Model Prediction in Nonlinear Systems Modelling through Forward Selection and Backward Elimination |
2008 |
Ahmad Z and Zhang J |
Neurocomputing |
72 (4-6) |
1198-1204 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Ship fuel consumption monitoring and fault detection via partial least squares and control charts of navigation data. Transportation Research Part D: Transport and Environment. |
2019 |
Capezza C, Coleman, SY, Lepore A, Palumbo B, Vitiello L. |
in press |
|
|
C. Multivariate Data Analysis, D. Process Modelling |
|
| Spatially and angularly resolved spectroscopy for in-situ estimation of concentration and particle size in colloidal suspensions |
2017 |
Chen Yi-Chieh, Foo David, Dehanov Nicolau, Thennadil Suresh N |
Analytical and Bioanalytical Chemistry |
409 |
6975-6988 |
A1. Non-invasive Raman spectrometry, C1 Multivariate data analysis, D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| Synergising biomass growth kinetics and transport mechanisms to simulate light/dark cycle effects on photo-production systems |
2021 |
Anye Cho Bovinille, Carvalho Servia Miguel Ángel, del Río Chanona Ehecatl Antonio, Smith Robin, Zhang Dongda |
Biotechnology and Bioengineering |
118 |
1932-1942 |
D2 Multi-block, predictive and multi-scale modelling methods |
DOI
|
| The development of an industrial-scale fed-batch fermentation simulation |
2015 |
Goldrick Stephen, Stefan Andrei, Lovett David, Montague Gary, Lennox Barry |
Journal of Biotechnology |
193 |
70-82 |
D1 Kinetic modelling |
DOI
|
| Towards intensifying Design of Experiements in upstream bioprocess development: An industrial E. coli feasibility study |
2016 |
von Stosch M, Hamelink J M, Oliveira R. |
Biotechnology Progress |
|
|
D2 Multi-block, predictive and multi-scale modelling methods, D3 Performance monitoring |
DOI
|
| Trialkylammonium salt degradation: implications for methylation and cross-coupling |
2021 |
Washington Jack B., Assante Michele, Yan Chunhui, McKinney David, Juba Vanessa, Leach Andrew G., Baillie Sharon E., Reid Marc |
Chemical Science |
12 |
6949-6963 |
B1 Reaction monitoring, D1 Kinetic modelling |
DOI
|
| Zero assignment for robust H_2/ H_infinity fault detection filter design |
2009 |
Dai X, Gao Z, Breikin T and Wang H |
IEEE T. Sig. Pro. Sys. |
57 |
1363-1372 |
D3 Performance monitoring |
DOI
|